知识点

  • 容器是可迭代对象,可迭代对象调用 iter() 函数,可以得到一个迭代器。迭代器可以通过 next() 函数来得到下一个元素,从而支持遍历。
  • 生成器是一种特殊的迭代器(注意这个逻辑关系反之不成立)。使用生成器,你可以写出来更加清晰的代码;合理使用生成器,可以降低内存占用、优化程序结构、提高程序速度。
  • 生成器在 Python 2 的版本上,是协程的一种重要实现方式;而 Python 3.5 引入 async await 语法糖后,生成器实现协程的方式就已经落后了。我们会在下节课,继续深入讲解 Python 协程。

迭代器

所有的容器都是可迭代的(iterable)。这里的迭代,和枚举不完全一样。迭代可以想象成是你去买苹果,卖家并不告诉你他有多少库存。这样,每次你都需要告诉卖家,你要一个苹果,然后卖家采取行为:要么给你拿一个苹果;要么告诉你,苹果已经卖完了。你并不需要知道,卖家在仓库是怎么摆放苹果的。

  • 迭代器(iterator)提供了一个 next 的方法。调用这个方法后,你要么得到这个容器的下一个对象,要么得到一个 StopIteration 的错误。你不需要像列表一样指定元素的索引,因为字典和集合这样的容器并没有索引一说。比如,字典采用哈希表实现,那么你就只需要知道,next 函数可以不重复不遗漏地一个一个拿到所有元素即可。

示例1

示例2:


生成器

  • 生成器是懒人版本的迭代器


代码块

#!/usr/bin/env python
# coding: utf-8

# In[2]:


def is_iterable(param):
    try: 
        iter(param) 
        return True
    except TypeError:
        return False

params = [
    1234,
    '1234',
    [1, 2, 3, 4],
    set([1, 2, 3, 4]),
    {1:1, 2:2, 3:3, 4:4},
    (1, 2, 3, 4)
]
    
for param in params:
    print('{} is iterable? {}'.format(param, is_iterable(param)))


# In[4]:


def generator(k):
    i = 1
    while True:
        yield i ** k
        i += 1

gen_1 = generator(1)
gen_3 = generator(3)
print(gen_1)
print(gen_3)

def get_sum(n):
    sum_1, sum_3 = 0, 0
    for i in range(n):
        next_1 = next(gen_1)
        next_3 = next(gen_3)
        print('next_1 = {}, next_3 = {}'.format(next_1, next_3))
        sum_1 += next_1
        sum_3 += next_3
    print(sum_1 * sum_1, sum_3)

get_sum(8)


# In[8]:


# 常规写法
def index_normal(L, target):
    result = []
    for i, num in enumerate(L):
        if num == target:
            result.append(i)
    return result

print(index_normal([1, 2, 3, 4, 2, 2, 4, 2, 3], 2))


# In[11]:


# 迭代器写法
def index_generator(L, target):
    for i, num in enumerate(L):
        if num == target:
            yield i

print(list(index_generator([1, 2, 3, 4, 2, 2, 4, 2, 3], 2)))


# In[15]:


def is_subsequence(a, b):
    b = iter(b)
    return all(i in b for i in a)

print(is_subsequence([1, 3, 5], [1, 2, 3, 4, 5]))
print(is_subsequence([1, 4, 3], [1, 2, 3, 4, 5]))


# In[29]:


def is_subsequence(a, b):
    b = iter(b)
    print(b)

    gen = (i for i in a)
    print(gen)

    for i in gen:
        print(i)

    gen = ((i in b) for i in a)
    print(gen)

    for i in gen:
        print(i)

    return all(((i in b) for i in a))

print(is_subsequence([1, 3, 5], [1, 2, 3, 4, 5]))
print(is_subsequence([1, 4, 3], [1, 2, 3, 4, 5]))

截图


Jupyter Notebook File

深入理解迭代器和生成器.ipynb

文章名: 《深入理解迭代器和生成器》

本文链接:https://lula.fun/1247.html

除特别注明外,文章均由 噜啦 原创

 原创文章 转载时请注明 出处 以及文章链接
最后修改:2019 年 11 月 27 日 08 : 36 PM